Extremes of Subexponential Lévy Driven Moving Average Processes

نویسنده

  • Vicky Fasen
چکیده

In this paper we study the extremal behavior of a stationary continuoustime moving average process Y (t) = ∫∞ −∞ f(t−s) dL(s) for t ∈ R, where f is a deterministic function and L is a Lévy process whose increments, represented by L(1), are subexponential and in the maximum domain of attraction of the Gumbel distribution. We give necessary and sufficient conditions for Y to be a stationary, infinitely divisible process, whose stationary distribution is subexponential, and in this case we calculate its tail behavior. We show that large jumps of the Lévy process in combination with extremes of f cause excesses of Y and thus properly chosen discrete-time points are sufficient to specify the extremal behavior of the continuous-time process Y . We describe the extremal behavior of Y completely by a weak limit of marked point processes. A complementary result guarantees the convergence of running maxima of Y to the Gumbel distribution. AMS 2000 Subject Classifications: primary: 60G70 secondary: 60F05, 60G10, 60G55

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremes of Regularly Varying Lévy Driven Mixed Moving Average Processes

In this paper we study the extremal behavior of stationary mixed moving average processes Y (t) = ∫ R+×R f(r, t − s) dΛ(r, s) for t ∈ R, where f is a deterministic function and Λ is an infinitely divisible independently scattered random measure, whose underlying driving Lévy process is regularly varying. We give sufficient conditions for the stationarity of Y and compute the tail behavior of ce...

متن کامل

On the Conditional Small Ball Property of Multivariate Lévy-driven Moving Average Processes

We study whether a multivariate Lévy-driven moving average process can shadow arbitrarily closely any continuous path, starting from the present value of the process, with positive conditional probability, which we call the conditional small ball property. Our main results establish the conditional small ball property for Lévy-driven moving average processes under natural non-degeneracy conditi...

متن کامل

A central limit theorem for the sample autocorrelations of a Lévy driven continuous time moving average process

In this article we consider Lévy driven continuous time moving average processes observed on a lattice, which are stationary time series. We show asymptotic normality of the sample mean, the sample autocovariances and the sample autocorrelations. A comparison with the classical setting of discrete moving average time series shows that in the last case a correction term should be added to the cl...

متن کامل

Tail Behavior of Multivariate Lévy-Driven Mixed Moving Average Processes and supOU Stochastic Volatility Models

Multivariate Lévy-driven mixed moving average (MMA) processes of the type Xt = ∫ ∫ f(A, t − s)Λ(dA, ds) cover a wide range of well known and extensively used processes such as Ornstein-Uhlenbeck processes, superpositions of Ornstein-Uhlenbeck (supOU) processes, (fractionally integrated) CARMA processes and increments of fractional Lévy processes. In this paper, we introduce multivariate MMA pro...

متن کامل

Functional Regular Variation of Lévy-driven Multivariate Mixed Moving Average Processes

We consider the functional regular variation in the space D of càdlàg functions of multivariate mixed moving average (MMA) processes of the type Xt = ∫ ∫ f(A, t− s)Λ(dA, ds). We give sufficient conditions for an MMA process (Xt) to have càdlàg sample paths. As our main result, we prove that (Xt) is regularly varying in D if the driving Lévy basis is regularly varying and the kernel function f s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005